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Abstract. Jet fields are defined on fibred manifolds and represented as type (1, 1) tensor 
fields corresponding to Cartan-Ehresmann connections. When defined on the first jet 
bundle they may be used to generalise the second-order differential equation fields used 
in theoretical mechanics and to extend several existing results to field theories. 

1. Introduction 

The study of second-order differential equation fields is central to the theory of 
time-dependent Lagrangian particle dynamics (see, for example, Prince (1983), Prince 
and Eliezer (1980, 1981), Sarlet (1982) and Sarlet and Cantrijn (1981) to list a few 
recent works on the subject). In general, these fields may be defined as vector fields 
A on the manifold TE x R (where E is the configuration manifold) which both 
annihilate all the contact forms and also satisfy the normalisation condition A( t )  = 1 
(Crampin 1977). In local coordinates ( t ,  q", 4 " )  such a field would be written 

a a a 
a t  aq" a q a  

A=--+q"-+A"- 

where A" are functions on TE x R. 
The main argument of this paper is that it is profitable to consider, not the vector 

field A as such, but the associated type (1, 1) tensor field AOdt. The reason for 
introducing this apparent complexity is that there is a natural construction of the tensor 
field which generalises immediately to jet bundles, and may therefore be used in the 
study of Lagrangian field theories. The tensor field itself is essentially a Cartan- 
Ehresmann connection (Mangiarotti and Modugno 1983), but a definition in terms of 
'jet fields' clarifies the analogy with mechanics and motivates this use of second-order 
jet fields. To demonstrate the use of the construction we prove three theorems which 
generalise results from the modern theory of tangent bundle geometry. Although we 
shall only consider first-order Lagrangian systems in the present work, the ideas may 
in principle be extended to higher-order systems. 

The structure of this paper is as follows. In Q 2 we summarise the notation used, 
and in 0 3 we give a general definition of jet fields and develop some of their properties. 
Finally in § 4 we apply these ideas to second-order differential equation fields. 

2. Notation 

We adopt the conventions of Saunders (1987); in particular, we work with a locally 
trivial fibred manifold ( E ,  T, M )  and its first jet bundle ( J ' T ,  T , ,  M )  using local 
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coordinates xi, u n  and up (1 < i < m, 1 < (Y s n). M will be orientable with volume 
form R = dx'  A , , . A dxm, and V (  T )  will denote the space of vector fields on E vertical 
over M. We shall also require the theory of derivations established by Frolicher and 
Nijenhuis (1956) and we make use of the bracket operation on vector-valued forms 
defined in terms of the corresponding derivations of type d,: if X ,  Y are vector-valued 
r- and s-forms respectively, then [ X ,  Y ]  is the unique vector-valued (r+s)-form 
satisfying 

dLx,yl=dx dy-( - l ) "  dy  d,y. (2) 

This bracket operation reduces to the ordinary Lie bracket of vector fields when r = s = 0 
(see Crampin and Ibort (1987) for a fuller discussion). dh and d, will denote the 
horizontal and vertical differentials mapping r-forms on J ' T  to ( r  + 1)-forms on J'T 
(Tulczyjew 1980) (where, however, dh and d, are defined on J " T ) .  Finally, a contact 
m-form on J ' T  will be any m-form 6 in A?( T , )  satisfying ( j '4 ) "e = 0 for every local 
section 4 of T ;  note that this differs from the definition found in, for example, 
Rogers and Shadwick (1982) in that not every contact m-form can be expressed as 
ai A @/axi J 0) where the ui are contact 1-forms. 

3. Jet fields 

We intend to define a jet field as a section of the bundle ( J ' T ,  T ' , ~ ,  E )  in an obvious 
analogy to the definition of a vector field (see also Goldschmidt and Sternberg 1973). 
To make this analogy more substantial we shall define the action of a 1-jet (and 
therefore of a jet field) on a function, and construct the equivalent tensor to a jet field. 
We shall define integral sections, and give conditions for their existence. We shall 
also characterise symmetries and infinitesimal symmetries of jet fields. 

Dejnition 3.1. Given a 1-jet jL4 E J ' T ,  the action of the jet on functions is the map 
C"(E)+ T&,,E defined by 

jMfl= T*(d(4*f),) .  (3 )  

This action is well defined for different representatives of jh+ because it depends only 
on the first derivatives of 4. It is clearly a generalisation of the action of a tangent 
vector on a function; the main difference is that the resulting entity is a cotangent 
vector lifted from the base manifold rather than a number. In coordinates, one has 

Dejnition 3.2. A jet field X :  E + J ' T  is a section of the bundle 7 ~ ' , ~ .  The action of 
X on functions is the map C"( E )  + AA( T )  defined by 

Xf&, = X ( 4 ( P ) ) [ f  I. ( 5 )  

If the coordinate representation of X is given by XS = U: 0 X then the action of X 
on functions may be written in coordinates as 
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This action, when extended to forms by the rule X(d0)  = -d(X0), is a derivation of 
type d, and suggests the following result. 

Proposition 3.3. There is a bijective correspondence between the jet fields X : E -+ J ' T  
and the type (1, 1) tensor fields T on E satisfying the conditions 

(1) T is a projection operator of constant rank m ;  
(2) T (  V) = 0 for every vector field V E  V( T ) .  

Proof: We give an explicit proof, rather than relying on the characterisation of X as 
a derivation. So suppose the jet field X is given. We fix a E E and let 4 be a local 
section of T satisfying jk(o14 = X(a) .  Definition 3.1 suggests that we should define 
an endomorphism of cotangent vectors in TXE by T*c$*, or equivalently an 
endomorphism of tangent vectors in TOE by 4*nTT*. This endomorphism depends only 
on the first derivatives of 4, and is therefore independent of the choice of 4; in 
coordinates it is expressed as 

Taking this endomorphism at each a E E yields a type (1 , l )  tensor field 2 which is 
seen to be smooth and to satisfy the conditions of the proposition from its coordinate 
representation 

Two distinct jet fields will have different coordinate representations at some point in 
E so that the corresponding tensor fields will differ; the correspondence is therefore 
injective. Furthermore, any tensor field T satisfying the conditions of the proposition 
must have a coordinate representation of the form 

so locally there is a jet field with coordinates TP which gives rise to T :  on overlapping 
coordinate patches these local jet fields must agree since the correspondence is injective, 
so we can define a global jet field and hence the correspondence is also surjective. 

It is clear from this result that, for a function f, Xf= dnf:  A similar result applies to 
jet fields and tensor fields defined only on a given open subset of E ;  in fact, one should 
note that the above proposition actually makes no assertion about the global existence 
of either type of object. In general, ( J ' T ~ ,  T , , ~ ,  E )  has the structure of an affine bundle 
which only takes the additional structure of a vector bundle in favourable circumstances. 
As a consequence, the addition of jet fields is normally undefined. 

We now move on to consider integral sections of a jet field. 

Definition 3.4. An integral section of the jet field X is a local section 4 of T satisfying 
j'f$ = x 0 4. 
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This definition clearly mimics the corresponding definition for an integral curve of a 
vector field. There is, however, an important difference: there is no guarantee that 
integral sections of a given jet field will exist, even locally. To see this, note that the 
definition of an integral section may be rephrased in coordinates as 

and that this set of partial differential equations must satisfy an integrability condition 
before solutions 4a can exist. In fact, the following result is essentially a translation 
of Frobenius' theorem into the language of jet fields. 

Proposition 3.5. The jet field X has integral sections if, and only if, the Nijenhuis 
tensor of 2 vanishes; such a jet field is termed integrable. 

Proof: Recall that the Nijenhuis tensor N R  of the type (1 , l )  tensor field 2 is the type 
( 2 ,  1) tensor field defined by its action on pairs of vector fields: 

N g ( U ,  V ) = R d [ U ,  V ] + [ 2 ( U ) , 2 ( V ) ] - 2 [ 2 ( U ) ,  V ] - 2 [ U , 2 ( V ) ] .  (11) 

Consider this expression locally and let U, V be coordinate vector fields. Then 
Ng(a/au", a /auP)  and Ng(a/ax',  alduP) vanish identically; the only non-trivial 
expression comes from 

However, the vanishing of this expression is precisely the condition for equations (10) 
to be integrable in the sense of Frobenius. 

We can also describe this condition in more geometric terms. When a diagonalisable 
type ( 1 , l )  tensor field is considered as an endomorphism of the tangent bundle, the 
vanishing of its Nijenhuis tensor implies that the distributions generated by the 
eigenspaces of the endomorphism are involutive. Now 2 is a projection operator, 
and so has eigenvalues zero and one. The distribution corresponding to the eigenvalue 
zero just contains the vertical vectors, and is always involutive; its integral manifolds 
are the fibres of 7 ~ .  The distribution corresponding to the eigenvalue one may or may 
not be involutive; if it is, then the image sets of the integral sections will be its integral 
manifolds. In fact, this latter distribution may be considered as defining a bundle of 
'horizontal' vectors on E, so (apart from the question of horizontal completeness) the 
jet field determines a Cartan-Ehresmann connection on 7 ~ ;  the connection is flat exactly 
when the jet field is integrable. If 7~ happens to be a principal fibre bundle and the 
horizontal subspaces are equivariant with respect to the group action then the jet field 
may be studied using the well established theory of gauge fields. 

We next consider symmetries of jet fields. In the case of a vector field a symmetry 
may be regarded as a diffeomorphism of the manifold which permutes the integral 
sections without changing their parametrization. It therefore seems natural to consider 
diffeomorphisms of E which project onto the identity of M and which permute the 
integral sections of X. So suppose $ is such a diffeomorphism. We wish to assert that 
4 is a symmetry of X if, whenever 4 is an integral section, so is $ 0 4. Using the 
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characterisation of 2 as an  endomorphism of Tbi , ,E  for each p in the domain of 
4, z,(,) = 4*T*, we find 

&,I,, = (+*d*)h*+i ' )  

= +*2,ipdJ;' 
or, more generally, 

z b l a )  = +*ga+;' (13) 

for a E E. We are therefore led to the following definition, which makes sense whether 
or not X is integrable. 

Definition 3.6. A symmetry of the jet field X is a diffeomorphism CC, of E which projects 
onto the identity transformation of M and which satisfies +*z = 2+* where 2 is 
regarded as acting on tangent vectors. 

Proposition 3.7. If X is integrable then + is a symmetry of X if, and only if, + permutes 
the integral sections of X .  

In the infinitesimal version of this construction we consider a vertical vector field r 
on E, with flow 

Definition 3.8. An infinitesimal symmetry of the jet field X is a vertical vector field r 
satisfying Y,.Z = 0. 

Proposition 3.9. If X is integrable then 
only if, for each t the diffeomorphism +, permutes the integral sections of X .  

is an  infinitesimal symmetry of X if, and  

Proof: For simplicity in the second part of the proof we suppose r to be complete, 
although this assumption is not necessary for the result to be valid. 

First, suppose each $, permutes the integral sections of X .  Then by (3 .6)  and (3 .7) ,  
t,bt*z = 2Gt*. Now for every vector field Y on E, and every a E E, 

(~ rz ) (  Y ) a  = ~ r ( g (  Y ) ) a  - z a ( - Y r Y ) a  

using continuity of the endomorphism za of ToE. Consequently the right-hand side 
of this expression vanishes, and so Yrz = 0. 

The converse involves a careful proof which effectively integrates along the flow 
+,. So suppose that Y r 2  = 0. Then for every vector field Y on E, and every a E E, 

~ r ( g ( ~ ) ) o  =ka(YrYIa  ( 1 5 )  

which we may write as 
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Fix a and choose an arbitrary real number h, writing a-h  = t j-h(a); then equation 
(16) is still true with a replaced by a - h .  For each tangent vector 77 E Ta_,E there is 
certainly a smooth vector field Y satisfying, for sufficiently small t ,  Y$-,(,-,) = t,!-f*v; 
with this choice of Y we obtain 

since za_,(v) is independent of t. Also, 77 E T,-,E is arbitrary, so we have 

as an endomorphism of T,_,E. 

equation relating endomorphisms of T,E, and if we write T for t + h we obtain 
Now premultiply this equation by (Lh* and postmultiply by (cl_,,*. The result is an 

However h, too, is arbitrary and so we find that I/&?$-,(,)+!-~* is independent of T 

and therefore equals its value when T is zero: - - 
ICri*X$-,(a)+-,* = Xu. (20) 

The result follows. 

Note that if the coordinate representation of the vertical vector field r is r" alau",  
then the condition for r to be an infinitesimal symmetry of X takes the 'Lax form' 

As a final remark in this section, we observe that when the base manifold M is 
one-dimensional with volume form dt, we may consider the vector fields Y on E which 
are r-related to the vector field a l a t  on M. Any two such vector fields Y differ by a 
vertical vector field, and so the contraction g( Y )  does not depend on the particular 
choice of Y.  We may therefore write it as g ( a l d t ) ,  and in this way recover the 
representation of X as a vector field rather than a tensor field. When dim M > 1 this 
representation is not available. 

4. Second-order jet fields 

The second jet manifold J'T is canonically embedded in J ' r l  by a map a 
second-order jet field is a jet field on the manifold J ' T  which satisfies additional 
conditions to ensure that its image is contained within L ~ , ~ ( . J ~ T ) .  

Definition 4.1. A section X : J ' r +  J 1 r l  of ( T ~ ) ~ , ~  is called a second-order jet field if, 
for every contact m-form 0 on J ' r ,  ig8 = ( m  - l )0 .  
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In general, the coordinate representation of the tensor field 2 on J 'T will be 

but by considering the contact m-forms (du' - u t  dxk)  A (a/ax' J R )  and duf A 

(a/dx' J a)  -duf A (a/axk J a) and applying definition 4.1 we find that Xp = up  and 
Xg = X ; .  Consequently UP, 0 X = U: 0 X and 0 X = up,t 0 X where the functions 
with semicolon subscripts are coordinates on J ' T ' .  These are just the conditions for 
Im(X) to be contained in L ' , ~ ( J ~ T ) ,  so we may regard the second-order jet field X as 
a section of T ~ , ~ ;  furthermore, every section of r2,' arises in this way. 

According to definition 3.4, integral sections of X are sections $ of the bundle 
( J'T, n1, M )  satisfyingj'4 = X 0 $; the following lemma gives a more useful characteri- 
sation. 

Lemma 4.2. If X is a second-order jet field then any integral section $ of X is the 
l-jet extension of a section of T. 

Pro05 If a is any contact l-form on J'T then 2 ( a )  = 0; this may readily be seen using 
the coordinate representation of 2. Therefore ~ : $ * a = 0 ,  and since T T  is injective 
we have $*a = 0. Since U is arbitrary $ must equal j'I#J, where 4 = T ~ , ~  0 $ is a section 
of T.  

As a result of this lemma we may regard 4 as the integral section rather than j '4 .  
Consequently integral sections of X satisfy the equations 

or, in a more familiar notation, 

We shall demonstrate the formal similarity between the theory of second-order jet 
fields and the theory of second-order differential equation fields by proving three 
theorems. The theorems all involve the vertical vector-valued m-form Sn on J ~ T ,  
defined intrinsically in Saunders (1987) and expressed in coordinates as a / a u p O  
(du" -up d d )  A (d/dx' _I R). 

The first two theorems both concern Lagrangian field theories, so we suppose given 
a Lagrangian function L :  J 'T+  R. An extrema1 of L is a section I#J of T having the 
property that, for every vertical vector field l7 on E, 

1 ( j + ) * r ) ( L ) a  = o  (25) 

where I" is the prolongation of r to J 'T.  In the same way as for mechanics, one finds 
that 4 satisfies the Euler-Lagrange equations: 

(see, for example, Krupka 1983). Furthermore, the Cartan form for L is the m-form 
OL on J ' T  defined by O L  = Sn(dL)+ LR (see Goldschmidt and Sternberg (1973) for 
an alternative intrinsic description of this object). 
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Theorem 4.3. Let X be an integrable second-order jet field. Then the integral sections 
of X are extremals of L if, and only if, 

in dO, = ( m  - 1) d o L .  (27) 

Roo$ If 4 is an integral section of X then j z 4  =Xojlq5, so the Euler-Lagrange 
equations become 

giving, explicitly, 

Since there is an integral section through each point of J ' T  we obtain 

A straightforward calculation then shows that ia d e L  = ( m  - 1) dO,. 

equation (30), so that 
Conversely, if 2 satisfies this relationship then the coordinates Xf: must satisfy 

on J ' T .  Then, if 4 is any integral section of X, 

We call such a jet field X an Euler-Lagrange field for the Lagrangian L. The 
prolongations j ' 4  of the extremals of L then describe the integral manifolds of the 
horizontal distribution generated by the tensor field 2. 

Theorem 4.3 corresponds to the result from time-dependent mechanics that the 
Euler-Lagrange vector field is a characteristic of the Cartan 2-form. By contrast, our 
second (closely related) theorem has the flavour of autonomous mechanics in that it 
uses the ( m  + 1)-form wL = d,(S, dL) defined in a way which mimics the definition of 
the 2-form w L  = d(S(dL)) in tangent bundle geometry (Crampin 1983). This theorem 
associates the tensor field to the Euler-Lagrange ( m +  1)-form 6L defined by 

6L = d( LR) + dh 0 L .  (33) 
In coordinates, 6L = (dL/au" - (d/dx ' )  aL/aup) dua  A R and so X*SL = 0; X may be 
regarded as a mapping which replaces the second-derivative coordinates in the 
expression for 6L with values which satisfy the Euler-Lagrange equations. Con- 
sequently SL vanishes along j 2 4  for any extrema1 4 of L. 

Theorem 4.4. If X is an Euler-Lagrange field for L then i g w L  = ( m  - l ) w ,  + 6L. 

Roo$ By calculation. 

Our final theorem is concerned with arbitrary second-order jet fields, not just those 
arising from Lagrangian functions. The corresponding result from tangent-bundle 
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geometry is that each second-order differential equation field A : TE + 77'E determines 
a decomposition of the bundle TTE : TTE + TE as a direct sum ( VTE + T E ) @  ( H ,  + T E ) .  
The proof involves taking the Lie derivative by A of the vertical endomorphism S and 
observing that Q = + ( I  - Y , , S )  is a projection operator whose kernel is the set of vertical 
vectors. The image of Q therefore determines a set of horizontal vectors (Crampin 
1983). 

7'heorem 4.5. Each second-order jet field X on J ' T  determines a decomposition of 
the bundle V T l + J ' T  as a direct sum ( V T ~ , ~ ~ J ~ T ) @ ( H ~ S J ~ T ) ,  i.e. every tangent 
vector to J ' T  vertical over M is assigned a unique component which is vertical over E. 

ProoJ: In the present context, the analogue of the Lie derivative is the Frolicher- 
Nijenhuis bracket of vector-valued forms described in 0 2. We therefore consider the 
vector-valued ( m  + 1)-form [ S , ,  21. Regarding this as an operator from 1-forms to 
(mS1)-forms we have, for every 1-form U on J ' T ,  [ S , , ~ ] ( U ) E A ; " + ' ( T , )  and if 
U E AA( T ~ )  then [Sa ,  2]( U )  = 0; this may be seen from the coordinate representation 
of [ S , ,  X I :  

If we write 1 A s2 for the vector-valued ( m  + 1)-form defined by 1 A Q(u) = U A R and 
put Q = i( I A R - [Sa, 21) then again Q(u)  E A;""( r1) and if (T E Ah( T ~ )  then Q(u)  = 0; 
in fact 

We now use the fact that there is a canonical isomorphism between V * r l  (the dual 
of VT,)  and T * J ' T A  ~ T ( s 2 ) .  The vector-valued (m+l)-form Q defines a mapping 
(also called Q )  from T*J'T to T*J'T A ~ T { s 2 }  by the rule Q(a,) = Q(u), where 
U, E T,*J'T; if it so happens that U, E TTT*M then Q(u,) = 0. However, each 8, E 

T * J ' T A  T T { Q }  has a representative U,, satisfying 8 , , = U p  A O ~ ,  and any two such 
representatives differ by an element of TTT*M. We may therefore define Q(8,) to 
equal Q(u,) where U, is a representative of 8,. The resulting endomorphism of 
T*J'T A T T { Q }  (and hence of V*T,)  yields the dual endomorphism of VT, which is 
a projection operator expressed in coordinates as 

The kernel of this endomorphism is V T , , ~ ,  and defining its image to be Hx gives the 
required decomposition of V r 1 .  

5. Conclusion 

The theorems proved in the preceding section demonstrate that several of the construc- 
tions used in the theory of mechanics are actually special cases of more general 
constructions which may be applied to field theories as well. Of course, calculations 
with a tensor field are a little more complicated than those involving merely a vector 
field; however, the idea of a jet field and its associated tensor is so natural that one 
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may expect many more of the existing results from the geometric theory of second-order 
differential equations to be established in this more general setting. 
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